Silver Fern Chemical, Inc. **Safety Data Sheet Stearyl Amine** Revision No.: 01 Reviewed On: 15/02/2023 **Effective Date: 15/02/2023** #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### Product Identifier Product name Stearyl amine Chemical Name Stearyl amine Synonyms 1-aminooctadecane, C16-18-(even numbered)alkylamines, n-octadecylamine, octadecylamine, stearyl amine, stearylamine Other means of identification Not Available CAS number 124-30-1 ### Relevant identified uses of the substance or mixture and uses advised against The Fatty Nitrogen Derived (FND) ether amines and FND amines have surfactant properties (e.g. comprised of hydrophobic and hydrophilic ends, form micelles, alter/reduce surface tension, form oil/water emulsions), and are used as additives and in the production of commercial surfactants such as ethoxylated ether amine surfactants. Some typical applications of FND Ether Amines are collectors for flotation process, additives for fuels, lubricants, and petroleum refining, corrosion inhibitors for metalworking fluids, chemical intermediates, textile chemical Relevant identified uses foaming agents, specialty surfactants, ethoxylates, agricultural chemicals, and cross linking agents for epoxy resins Based on an analysis of data across the FND chemicals, the chain length and degree of unsaturation in the FND surfactants does not appear to have a significant impact on fate and effects. In formulations for corrosion inhibition in water treatment and hydrophobing of silica, or as a chemical intermediate. Ethoxylated end-products are used in detergent, cosmetic and agricultural applications. Acetate form used as emulsifier or dispersant in textile chemical auxiliaries applications. # Details of the supplier of the safety data sheet Registered company name Silver Fern Chemical, Inc Address 121 W. De La Guerra Street, Suite B Santa Barbara, CA 93101 USA **Telephone** 1-866-282-3384 Website www.silverfernchemical.com Email info@silverfernchemical.com ## **Emergency telephone number** Association / Organization Infotrac Emergency telephone numbers 1-800-535-5053 Outside USA and Canada +1-352-323-3500 # SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Classification Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1 #### Label elements #### SIGNAL WORD DANGER #### Hazard statement(s) H302 Harmful if swallowed. H315 Causes skin irritation. H318 Causes serious eye damage. H317 May cause an allergic skin reaction. H335 May cause respiratory irritation. H373 May cause damage to organs. H410 Very toxic to aquatic life with long lasting effects. #### Precautionary statement(s) Prevention P260 Do not breathe dust/fume/gas/mist/vapours/spray. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves/protective clothing/eye protection/face protection. **P270** Do not eat, drink or smoke when using this product. P273 Avoid release to the environment. P272 Contaminated work clothing should not be allowed out of the workplace. #### Precautionary statement(s) Response P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a POISON CENTER/doctor/physician/first aider. P302+P352 IF ON SKIN: Wash with plenty of water and soap. P333+P313 If skin irritation or rash occurs: Get medical advice/attention. P362+P364 Take off contaminated clothing and wash it before reuse. P391 Collect spillage. P301+P312 IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P330 Rinse mouth. #### Precautionary statement(s) Storage P405 Store locked up. P403+P233 Store in a well-ventilated place. Keep container tightly closed. # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### Substances | Substitutes | | | | |-------------|------------|--------------------|--| | CAS No | %[weight] | Name | Classification | | 124-30-1 | 99.0 % Min | Stearyl Amine 9698 | Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1; H302, H315, H318, H317, H335, H373, H410 | #### Mixtures See section above for composition of Substances # SECTION 4 FIRST AID MEASURES # **Description of first aid measures** Eye Contact If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Skin Contact If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. - If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid Inhalation procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay. - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. - For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility Ingestion of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. **NOTE:** Wear a protective glove when inducing vomiting by mechanical means. #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### SECTION 5 FIREFIGHTING MEASURES #### **Extinguishing media** - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may # Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and # Fire Fighting cool adjacent area. - DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Fire/Explosion Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible Hazard (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the
solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. Build-up of electrostatic charge may be prevented by bonding and grounding. Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. All movable parts coming in contact with this material should have a speed of less than 1-meter/sec. A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases. Combustion products include: ,carbon monoxide (CO),carbon dioxide (CO2),nitrogen oxides (NOx),other pyrolysis products typical of burning organic material ### SECTION 6 ACCIDENTAL RELEASE MEASURES #### Personal precautions, protective equipment and emergency procedures Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with Minor Spills the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. Environmental hazard - contain spillage. Environmental hazard - contain spillage. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means Major Spills available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### SECTION 7 HANDLING AND STORAGE #### Precautions for safe handling - Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a wellventilated area. Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, Safe handling sparks, and flame. Establish good housekeeping practices. Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. Do not use air hoses for cleaning. Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. Do not empty directly into flammable solvents or in the presence of flammable vapors. The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. - DO NOT store near acids, or oxidising agents - Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and Other information check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a # Conditions for safe storage, including any incompatibilities Suitable container Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks. contingency disaster management plan; this may require consultation with local authorities. Storage Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid contact with copper, aluminium and their incompatibility alloys. Avoid reaction with oxidising agents #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### Control parameters ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA Not Available #### **EMERGENCY LIMITS** | Ingredient | Material | name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------|---------------|---------|---------------|---------------|---------------| | OCTADECYLAMINE | Not Avail | able | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised | d IDLH | | | | octadecvlamine | Not Available | Not Ava | ailable | | | #### MATERIAL DATA It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum. NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Sensory irritants are chemicals
that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - cause inflammation - · cause increased susceptibility to other irritants and infectious agents - lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - · acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. ### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; engineering controls (c): fresh-air hoods or masks - Appropriate (b): filter respirators with absorption cartridge or canister of the right type; - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. Type of Contaminant: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). Air Speed: 1-2.5 m/s (200-500 f/min.) 2.5-10 m/s (500-2000 f/min.) Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents - 2: Contaminants of low toxicity or of nuisance value only - 3: Intermittent, low production. - 4: Large hood or large air mass in motion - 2: Contaminants of high toxicity - 3: High production, heavy use - 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use Eye and face and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable protection equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, Hands/feet glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or protection national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. Polychloroprene. nitrile rubber. butyl rubber. fluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. Body protection See Other protection below Other protection Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. Thermal hazards Not Available ### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1 | - | PAPR-P1 | | up to 10 x ES | Air-line* | - | - | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | | | | | | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users
are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES #### Information on basic physical and chemical properties Appearance Off-white to yellow solid/flake with an ammoniacal odour; does not mix with water. Physical state Solid **Odour** Not Available Odour threshold Not Available pH (as supplied) Not Applicable Melting point / freezing point (°C) 50-60 Initial boiling point and boiling range (°C) 232 (43 hPa) Flash point (°C) 148 (COC) Evaporation rate Not Applicable Flammability Non Flammable Partition coefficient n-octanol / water Not Available Auto-ignition temperature (°C) Not available. **Decomposition temperature** Not Available Relative density (Water = 1) 0.79 Viscosity (cSt) Not Applicable Molecular weight (g/mol) 269.58 Taste Not Available Explosive properties Not Available Oxidising properties Not Available #### SECTION 10 STABILITY AND REACTIVITY Reactivity See section 7 Chemical stability Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Possibility of hazardous reactions See section 7 Conditions to avoid See section 7 **Incompatible materials** See section 7 Hazardous decomposition products See section 5 ### SECTION 11 TOXICOLOGICAL INFORMATION #### Information on toxicological effects Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours, aerosols (mists, fumes) or dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such Inhaled as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Aliphatic and alicyclic amines are generally well Ingestion absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role. Skin Contact The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either - produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destructionEntry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids, may produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in "triple response" (white vasoconstriction, red flare and wheal) in human skin. Eye When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Harmful: danger of serious damage to health by prolonged exposure if swallowed. Serious damage (clear functional Chronic disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. # octadecylamine | | TOXICITY | IRRITATION | |---|-----------------------------------|-----------------------------------| | e | dermal (rat) LD50: >2000 mg/kg[1] | Eye (rabbit): SEVERE | | | Oral (rat) LD50: 1200 mg/kg[1] | Skin (rabbit): 20 mg/24h moderate | **Legend:**1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances OCTADECYLAMI The following information refers to contact allergens as a group and may not be specific to this product. NE Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing
and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. For Fatty Nitrogen-Derived ether amines and Fatty Nitrogen-derived amines (FND ether amines and FND amines): FND ether amines and FND amines are very similar in structure and function. The minimal difference among the alkyl substituents and the large database for the FND categories indicates that the structural differences in these large alkyl chains do not result in differences in toxicity or mutagenicity. The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals The available acute oral LD50 study for the propanamine derivative with the extensive data for the other supporting chemicals provides adequate evidence that the FND ether amines are only moderately to slightly toxic via this route and exposure period. Acute dermal studies for the supporting chemicals indicate these chemicals can be classified as minimally toxic. Acute inhalation studies did not result in deaths under normal exposure conditions for two chemicals. Repeated dose toxicity studies had similar NOAELs (12.5 to 50 mg/kg/day for rats and 3 or 13 mg/kg/day for dogs). Importantly because the highest exposure potential for some of the FND ether amines is via skin contact, a number of repeat dose dermal studies indicate the chemicals are highly irritating. No clear organ-specific toxicity occurred in any of the repeat dose studies with the supporting chemicals in the FND ether amines category. In addition, available data indicate that the FND ether amines are unlikely to be mutagenic and that they are not reproductive or developmental toxins In evaluating potential toxicity of the FND Amines chemicals, it is also useful to review the available data for the related FND Cationic and FND Amides Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. **Acute Toxicity** Skin Irritation/Corrosion Serious Eye Damage/Irritation Respiratory or Skin sensitisation Mutagenicity Carcinogenicity Reproductivity STOT - Single Exposure **STOT - Repeated Exposure Aspiration Hazard** - Data available but does not fill the criteria for classification - Data required to make classification available Legend: - Data Not Available to make classification #### SECTION 12 ECOLOGICAL INFORMATION #### **Toxicity** | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------|--|--------------------|-------------------------------|------------|--------| | | LC50 | 96 | Fish | 0.016mg/L | 3 | | | EC50 | 48 | Crustacea | 0.011mg/L | 2 | | octadecylamine | EC50 | 96 | Algae or other aquatic plants | 0.0008mg/L | 2 | | | EC50 | 96 | Algae or other aquatic plants | 0.0014mg/L | 2 | | | NOEC | 96 | Algae or other aquatic plants | 0.0002mg/L | 2 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (CAUTE (Laborated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Toxicity Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Data (Estimated)) 4. US EPA, Ecotox database - Aquatic Data (Estimated)) 4. | | tabase - Aquatic | | | Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) -Bioconcentration Data 8. Vendor Data Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For Fatty Nitrogen-derived ether amines and Fatty Nitrogen-Derived amines (FND ether amines and FND amines): Environmental fate: Consistent with the size and nature of these molecules, measured and modeled vapor pressures are very low, and the FND ether amines are considered to be essentially nonvolatile. Measurement and prediction of physical/chemical properties for surfactants are complicated by their behavior in test systems and the environment, and the log Kow is
not an appropriate hydrophobicity parameter for reliably predicting environmental behavior .Prediction of physical/chemical properties, including strong adsorption and absorption properties (log Koc) and surface tension activity is unreliable for the same reasons. Water solubility estimates varied from slightly soluble to very insoluble. Fugacity models predict virtually no occurrence of the FND ether amines in air, which is consistent with the very low vapor pressures. Nonetheless, modeling indicates that they would be expected to degrade relatively rapidly upon exposure to light (t1/2 values ranging from approximately 1.0 to 2.8 hours). Distribution to air and soil were < 1% for all of the chemicals that could be modeled while distribution to the water compartment varied from 5 to 90% with the remainder in the sediment. Overall, FND ether amines have been shown to be either readily biodegradable or to attain degradation close to meeting the "readily biodegradable" criteria. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |----------------|-------------------------|------------------|--| | octadecylamine | LOW | LOW | | #### Bioaccumulative potential | Divaccumulative po | tentiai | |--------------------|-----------------------| | Ingredient | Bioaccumulation | | octadecylamine | LOW (LogKOW = 7.7102) | | Mobility in soil | | | Ingredient | Mobility | | octadecylamine | LOW (KOC = 319800) | ### SECTION 13 DISPOSAL CONSIDERATIONS #### Waste treatment methods Product / Packaging Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/recycling if possible. disposal Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material) Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** ### **Labels Required** Land transport (UN) UN number 3077 UN proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains stearyl amine-90D) Transport hazard class(es) Class Subrisk Pot Applicable Packing group III Environmental hazard Not Applicable Special precautions for user Special provisions 274; 331; 335; 375 Limited quantity 5 kg ### Air transport (ICAO-IATA / DGR) UN number 3077 UN proper shipping name Environmentally hazardous substance, solid, n.o.s. * (contains stearyl amine-90D) Transport hazard class(es) ICAO / IATA Subrisk 9 ICAO / IATA Subrisk Not Applicable ERG Code 9L Packing group III Environmental hazard Not Applicable | | Special provisions | A97 A158 A179 A197 | |------------------------------|---|--------------------| | | Cargo Only Packing Instructions | 956 | | | Cargo Only Maximum Qty / Pack | 400 kg | | Special precautions for user | Passenger and Cargo Packing Instructions | 956 | | | Passenger and Cargo Maximum Qty / Pack | 400 kg | | | Passenger and Cargo Limited Quantity Packing Instructions | Y956 | | | Passenger and Cargo Limited Maximum Qty / Pack | 30 kg G | # Sea transport (IMDG-Code / GGVSee) UN number 3077 UN proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains stearyl amine-90D) Transport hazard class(es) IMDG Class IMDG Subrisk 9 Not Applicable Packing group III Environmental hazard Marine Pollutant Special precautions for user EMS Number F-A, S-F Special provisions 274 335 966 967 969 Limited Quantities 5 kg # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### SECTION 15 REGULATORY INFORMATION Safety, health and environmental regulations / legislation specific for the substance or mixture # OCTADECYLAMINE(124-30-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS #### Not Applicable | Not Applicable | | |-------------------------------|---| | National Inventory | Status | | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (octadecylamine) | | China - IECSC | Y | | Europe - EINEC / ELINCS / NLP | Y | | Japan - ENCS | Y | | Korea - KECI | Y | | New Zealand - NZIoC | Y | | Philippines - PICCS | Y | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### CONTACT POINT Disclaimer: The information on this SDS was obtained from sources which we believe are reliable. However, the information is provided without any warranty, express or implied, regarding its correctness. Some information presented and conclusions drawn herein are from sources other than direct test data on the substance itself. The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume damage or expense arising out of or in any way responsibility and expressly disclaim liability for loss, connected with handling, storage, use, or disposal of this product. If the product is used as a component in another product, this SDS information may not be applicable. # Other information # Ingredients with multiple cas numbers | Name | CAS No | |----------------|----------------------| | octadecylamine | 124-30-1, 90640-32-7 | The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index Approved BR 09-09-2025